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ABSTRACT

Using the exact solution for a pure Dirac particle (g=2)
in a constant, homogeneous and arbitrarily strong magnetic
field, Heisenberg and Euler and Weisskopf derived an exact
expression for the non-linear part; L1 say, of the Lagrangian
of the electromagnetic field.

When the anomalous magnetic moment of the electron
(g#2) is considered, by adding a phenomenonological Pauli
term to the Dirac equation, the exact solutions can still be
found. Using these exact solutions we derive, in addition to

Ly, a new non-linear term, L2 say, which is correct to relative

a2
order ol .
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. and Euler

An exact expression for the corrections to the Lagrangian

of the electromagnetic field has been obtained by Heisenberg

1) 2)

and by Weisskopf for fields F(E,H) satisfying

the conditions

we [VEI<<lel | = |35 ] << IFl W

J

i.e. for slowly varying fields. In this analysis use was
made of the exact solution for a pure Dirac particle (g=2)
in a constant, homogeneous and arbitrarily strong magnetic

fielg.2:3)

The derivation is also based on the assumption
. ! , .
that the addition W to the classical energy density of the

electromagnetic field

Wo - _3:’7; (EJ.+H2) (2)
due to the existence of the electron-positron vacuum, is
exactly equal to the energy density of the vacuum electrons
(i.e. the electrons which fill the negative energy sea
postulated by Dirac) minus the potential eﬁergy of the electrons
in the external electromagnetic field. This led to the

conclusion that the addition Ll to the classical Lagrangian

(3)
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is equal to the negative of the total energy density of the

electron-positron vacuum, W,  say, in the presence of an external

field. Then, since Ll is only a function of two independent in-

. 2 2 .. .
variants, E -H% and (gﬂg) , 1t is sufficient to obtain the

value of W, for particular field configurations. 1In particular,
the magnetic field is taken to be constant and homogeneous
along the z axis and the electrostatic field is chosen
parallel to it. In this paper we are interested only in the
corrections to the Lagrangian of the magneﬁic field and thus
we take E=0. We will return to the more general case of
E£0 in a later publication.

The possible values of the energy of a vacuum electron
(neglecting its anomalous magnetic moment) in a constant

. . . 2
magnetic field H directed along the z axis are :3.4)

(o)
(e) E..(P
- ——nlb—.——— _— & o !i
E»1\,,.*2 (p)= mce? - I+P f—(ln*lf—b) He (4)
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where 2 3
- P : m ;
Pz =g , Ho= “ox T F 4-4iaxio 3?/.11,,0
)

and where n = 0,1,2,... is the principal quantum number,
s = *1 is the spin variable, P, is the momentum of the

particle along the z axis and the superscript on € refers

to the fact that the anomalous magnetic moment has been




2
ignored. By use of Equation (4) it was found that )

o
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where

’ H
H = H, (6)

£

It follows that (where A = ;7))

(3

/ 2 m C

, _
’ -
V= G 35 4 Ho e T e O

L

and i e

< . 22 P »
L= 3o A2 H LoH A 07> (e

]

which represent the weak and strong field limits%}respectively.

It is our purpose in this communication to obtain the
corrections L2 to Lo+ Ll which result from the fact that the
electron has an anomalous magnetic moment (AMM). Now
the origin of this extra magnetic moment is explained by
taking into account the fact that the electron can emit or
absorb virtual photons and it can be taken care of in a
phenomenological manner by adding the so-called Pauli
anomalous moment interaction term (a:bJ;}a“J) to the usual Dirac
Hamiltonian. In the case of a pure magnetic field the Dirac

equation may thus be written




.2y e s } '
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wnere Vad is the anomalous magnetic moment. ' Different

values for the energy eigenvalues derived from the equation

6,7)
are quoted in the literature. In view of this

discrepancy, we have re-derived the result (See Appendix A)

and we find, in agreement with reference 7, that the energy

eigenvalues of the vacuum electrons are given by

E‘_‘LU_? y . " %
me*r =7 {f’ + [{Ir@nﬂ‘w)H'} +45Sa H“]](lo)
7

E-»,g (r)

where a = /‘_“-'_g and /U'gis the Bohr Magneton. Now, following
2
Welisskopf ), we write the energy density of the vacuum electrons,
W, say, as follows
HY omd & r
c - .
W, T = amt Ty 2 JE P) <
"o K7 A s sZ:'u . ﬁ‘s( ) P
- ~ (11)
()
= w )
= o~ + 4 ’W%

—to) _ .
where M) " refers to the energy density when the AMM is

neglected. To facilitate the evaluation 4&;” , we expand

2
to relative order <. and define
w)

. _ . y_u) a 2)
A%% = o A%’” <+ X A’LU:’“’ (12)
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It turns out, as we shall see shortly, that the contribution
from dwjz to the energy density is divergent and proportional
to H2; this term is included in the unperturbed field enérgy3)
(renormalization of charge or field intensity). Consequently,
the first non-linear contribution from Equation (12) is

' 3
already proportional to o¢ which allows us to restrict our-

selves to the lowest order term in a"viz. the Schwinger result

A = 2T, (13)

Thus, to the order required,

o e w =]
E’)\,s{'P‘):' iP | 2I+Q.>\.+S+1)H’]’/ +Sar ] (14)

Expanding this expression to order o we get
(¢ ) o - Cos @ \
€,$LP)= Eﬂs (r) + 27 SH (En ”(_C)/zhf(p))
» P ¢ S

- ';. Ea%)z— /'/’lé‘:: (P))‘l{ (Z:J (c)/t':)szp) T / } .

The first term in this expression is the one used by the

(15)

authors of reference 1-2), and we will not be concerned about
. ¢) , =~
it. To calculate 4%, we substitute the 45 term from

Equation (15) into Equation (1l) . Using the fact that

() (vl

c. . (p) = (P) (16)

o~ 5\+());




it is easily shown that

S - - =L (17)
—»»?c S%-ii S ( 1"(c)/i (P)> - Jitpe
Thus it follows that
Y "'C(P
L) . 2 J (18)
4 o ol H o e ,

which justifies our previous statement following Equation (12).
Let us now consider the evaluation of

2w
H® [
4w = §(a5)% . J M P))-ljt (o) E (i’)
_ W me”
Making use of Equation (16) again we get
A= 2 2, o) (/) - 2
(20)
(5 +3) €] £ _lg
nEe E (P)
where
2” (p) = J/+/"+2x H* (21)
Now
/)L
E [P) ic (")/5 [/’)) -I] o (1#p*+ x YA (22)
where

(23)




It is thus obvious that A(P) can be put in the following

more transparent form
Al = F(o) + 22 F(x) | (24)

to which the Euler summation formula (valid for any F) may

be applied. Now the latter formula may be written as

F(c)flzrbe'n)— ,g{ F)d2 +

nit

w 3 ’&l{‘ 2 (25)
2- 5o t-t) _(x€-1) .}
—- 0) — F (o)
Y [FP ") ]
. RE-1)
where Bt are the Bernoulli numbers and F denotes the
(24 - )th gerivative with respect to z where z = bn. 1In

our particular case X =z 2%.{% is equal to.bn and hence

+
b is equal to 2 H . Making use of the fact that

Q¢e-1)

= -3 _ 2 X —t—1 £

/6/')(@4‘/) (P + 1+ )() Y /-(Qf‘fz'{)(r’ it X)
Y

it follows that
PL _dx (2] > _1{" T 7
2 S_ Dy P

A[p.):—_ {fLFP +X JT':{::I G{) /-Clc" ) C[oLfl).z{f’A J (26)

Now the integral in Egquation (26) 1is independent of H and
thus when A(r) is substituted in Equation (19) the result

?) contains this integral multiplied by a factor

for 4w
proportional to H2 whhich, as before, is included in the

unperturbed field energy and hence neglected in our subsequent




discussion , Making use of the formula
P AP
T -, = F{s~ 34
r(s ) | )
we see

amdp == 3

/-_-'2(7—/
- £z (Qlt_)" [ ) (28)
Now making use of the fact that
N A
-7 2 -2
[(24-1) = {476 ]37 (29)

J

substituting Equation (28) in Equation (19)7and replacing t by
n we get

1 v

L
2) ; 17.-1 bﬂ:\/ﬁ]‘
Making use of the formula
= 2B
. f J_‘ 2w~
Ctlx ~ L= 2 2y (31)
™~ (—27\)/ 7
we finally get
L - 2) _ _’\ J7 _') s’"’ ?
2:-—-‘)( 47/;/7“. - 3ap“ ézn—) /L/ // Q"/(/'/i/ /J (32)

This equation for L2 represents the desired correction to the

non-linear Lagrangian of the magnetic field which arises from

the fact that the electron has an anomalous magnetic moment.
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It is now of interest to consider the weak and strong

fields limits, We f£ind (#*: 2-)
[4

L, o GL?)\ ‘7‘;11%— ,Z)(/ /[,QA Hee H, (33)
Pl

L, = o= Z;“‘,:)L‘%}: (;,%‘)L,é\_ G%)%/\ H>>H.  (34)
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APPENDIX A: CALCULATION OF THE ENERGY EIGENVALUES OF A
RELATIVISTIC ELECTRON WITH AN ANOMALOUS MAGNETIC

MOMENT IN A CONSTANT MAGNETIC FIELD OF ARBITRARY
STRENGTH

As discussed in the main text we use the usual Dirac
equation, with the addition of the Pauli anomalous moment

interaction term (see Equation (9)), which we repeat for

convenience
i 2 = {upseq) rpm ey, T OHY (a1)
= — “ + /u')/‘?_ St A .

It is also convenient to set X = c¢ = 1 for the purpose of

this derivation. We now choose the following representation
for the 3/ matrices

- 71 ) O Tl)
= -1 e S : . X, = o - i
Xi J/z,—, T J s\, Y/
+

o
T
] ¢
3/4- = ) ~I> } E

-— | et
V. Dbeing the usual Pauli matrices, and we set

E:—i‘7;+ eA; . (82)

The magnetic field is considered to be directed along the
z axis and it is convenient to use a cylindrical coordinate

7)

system ‘. Similar to the procedure used by Johnson and
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5 . .
Lippmann ) in the case 4¢ =0 | we write the solution

to Equation (Al) in the form

\VI
= ¥

v 2 (a3)

VS

" )

and we set

P, 2 s (A-1)d , ' |
€ e ’ﬂ, ; () ) (34)
/ P2 s 4

. - —_— < /7 :
\V_;“;_ - Nar € e fzﬂ" (’7’) 5

(A5)
where PZ is the momentum of the electron in the z-direction
and /07‘, L3 4 (-7) are the functions of r which are to be determined.

Using the fact that

. . teP /o +~ oA

Tt = -3 B > = = 7

- »T/; = e Co-/ 7 o 3’7') , (Rne)

and
¥, v
¥, = -V ;
3. 2, 3 L } (87) |

.
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it follows from the above equations that

E-m) L0 7 [Z + 2 rpr] f0) +0 07

E-m2) futr) =L 55 - D ]G R )

) Qé— i / 5 .
E-7m.) A7) = =5 - ‘»7/)"{7’]://(7‘/’*/} 707

where
- en _ i _afH
d/'— 2 - .17"-\!.1
’hll = %,’V,Li!-/}' m, = M+ H 5 S = /x.c '

As before AL, denotes the Bohr Magneton.

(AB)
>

(A9)

’ (p11)

(A12)

. 2
It is now convenient to set {72 4’7' . As a result

Equations (A9) and(@ll) may be re-written as

k'S

2

1_@ L_+—‘i:;—:€“~§-({ ') 7{((’%1) fl(A c¢ (B13)

N

oy .3 < o

— o o _ —_ ‘L\_-‘ (‘("/} ~ ; B \ P /i
IG) wes T o 42 X 2 +b;]'fl(€>)- 3 f’/% (tr.'/ié

(Al4)
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where ; a
8‘_‘—‘ 4 E-omom ~p, *DE] ) .
(A15)
o2 “
8.2: 4_1/ L(: “7721'771.2-—-8;__.1)5]
) (Ale)
8, =41 )
(A17)
and
D= 7 -7, = 2/« H . (A18)

The functions {* and f_—/?obey similar equations but these will
not concern us here. To solve these equations we use the
familiar power series method. Assume

19

St - N
D /oY o= * 5> - Al9
/f4<:~)' e (O h%_o CN' \O ) ( )

. ‘ N

’f;.(f’); e S Nz..m Dy C : (320)

We now substitute Equations (Al9) and (A20) into Equations

o ~ i
- = sovr S -1
2

(313) and (Al4) . Equating the coefficients of ¢« &

we find

J
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I » J,@ : ; -"\'._ _é.\--" =
CN-I{-b.‘—/V + 32 - Y .“.SJ?CN. [Q“Tb) Cz.) _/'f-g\}:D(v—l D) (521)

‘DN-I [g_z - N - Li - QS) . ‘S] * Dv Z:Chvrs)'v_ C—%)‘—]‘83 C,v-/ e .
(nr22)

Taking N=0 , it immediately follows that 2S-= LA/ However,
to avoid divergence difficulties for =¢ it is necessary to

discard the 25=-4 solution. Thus, from henceforth, we take
9.5:/5 . To obtain a well-behaved wave-function we assume, as

is usual, that our series terminates at VM=/ . e.

Now let A=A+ in Equations (A21) and (A22) and we get

. ~ / 5 v m 7 -
C,[8-w=-2] +8,D, =0 (a23)

C U} ~-D [B,-w-2] =0 (A24)

W
It immediately follows that
F,’) o o / >
[_1)‘ —(n -f—,e)][b__z — r2)] - B, = (A25)

This equation can now be solved for E with the result

Cod

N Z
- PAY o .04 T B
et ) e[ 2]t ha £ [ e
)
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o, - - -
’ 7

f\'\ 3

N
where N+

It is now convenient to re-write this equation in the form
2
P )" yo, , R
- + 2 ;A - ) A ya H
E"\,S'_j éP) -—77"'{(% +[{[T Hc(l 4571)} + 5 };Q —:l:]} (A27)

where Sz 11 anel s =t ! . Going now to

the non-relativistic limit leads to the result that

(¥R) -

=t d ez (LY 2 N, S,
s () = 2 1 2 G v S0 = C)J}, (528)

=

and thus it follows that
s =5 (229)
Thus we get our final expression (reinserting the c¢)

i(A30)

1=+

i J'r P - £ = \ V_‘_ j ‘—7:
C,..‘_; (p) = 7ru.,2 C:f) -é—[‘zl.* E(ln-rsf()} 5 S ','j‘] j

which corresponds to Equation (10) in the main text.
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